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Abstract
In this paper, we consider the order estimation problem of a 2-dimensional complex super-
imposed exponential signal model in presence of additive white noise. We use the recently
proposed exponentially embedded family (EEF) rule (see Stoica and Babu in IEEE Signal
Process Lett 19(9):551–554, 2012; Kay in IEEE Trans Aerosp Electron Syst 41(1):333–345,
2005) for estimating the order of the 2-dimensional signal model and prove that the EEF rule
based estimator is consistent in large sample scenario. Extensive simulations are performed
to ascertain the performance of the order estimation rule and also to compare the finite sam-
ple performance of EEF rule based estimator with other popular order selection rules using
simulation examples.

Keywords Akaike information criterion (AIC) · Bayesian information criterion (BIC) ·
Two-dimensional complex superimposed exponential signal · Consistency · Exponentially
embedded family (EEF) · Model order estimation

1 Introduction

The need for model order selection is of primary interest to parametric signal processing and
time series problems. In this paper, we consider the problem of estimation of model order
of a 2-dimensional complex superimposed exponential signal model. Detection of signal
components in the presence of noise of a 2-dimensional complex exponential model is an
important problem in statistical signal processing. Specifically, we consider the following
signal model:

y(s, t) = f (s, t, θm) + ε(s, t); 1 ≤ s ≤ S; 1 ≤ t ≤ T ; (1)
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f (s, t, θm) =
m∑

k=1

αke
i(sβk+tωk ). (2)

Thus the signal model is

y(s, t) =
m∑

k=1

αke
i(sβk+tωk ) + ε(s, t). (3)

θm = (α1R , α1C , β1, ω1, ..., αmR , αmC , βm, ωm)′ is a 4mx1 vector of unknown signal param-
eters; α jR and α jC denotes the real and the imaginary parts of α j for j = 1, ...,m. Let mo

denote the unknown true number of components in the the observed signal. Given a sample
of size ST , y = (y(1, 1), . . . , y(S, 1), y(1, 2), . . . , y(S, 2), . . . , y(S, T ))′, the model order
estimation problem is to estimate mo.

Abundant literature on model order selection techniques exists, including some of the
most popular techniques, the Bayesian Information Criteria (BIC) (Schwarz 1978; Rissanen
1978, 1982) and the Akaike Information Criteria (AIC) (Sakamoto et al. 1986; Akaike 1974).
There has been some recent advancements too, where novel rules have been designed with
favourable properties like Penalizing Adaptively the Likelihood (PAL) approach (Stoica and
Babu 2013) and exponentially embedded family (EEF) rule (Stoica and Babu 2012; Kay
2005). Kay (2005) proposed the EEF rule for model selection. Stoica and Babu (2012)
presented a GLR based derivation of the proposed EEF rule and thus bridged a connection
between EEF and other conventional model order selection techniques. Recently, Zhu and
Kay (2018), gives an explanation on the EEF penalty term from a Bayesian perspective,
which may shed light on explaining the large sample consistency of EEF rule. An attempt
to extend EEF in complex valued signal processing, specifically for estimating degree of
non-circularity of complex valued signal vectors have been made by Zhu and Kay (2017).
More recently, Agrawal et al. (2018) used the EEF formulation for order estimation of real
valued multiple sinusoidal model and established that the EEF rule based order estimator is
large sample consistent. No attempt as such in the literature is reported however, at least not
known to the authors, regarding EEF approach for high dimensional complex valued signal
models. The purpose of this paper is to extend the EEF rule for addressing the problem of
order estimation of higher dimensional complex valued signal models and study the large
sample behaviour of the estimator.

Detection of the signal component in presence of noise is an important problem in statisti-
cal signal processing.A real valued2-dimensional sinusoidalmodel has received considerable
attention in the signal processing literature because of its widespread applicability in the tex-
ture analysis. The problem of estimating the parameters of complex valued two-dimensional
exponential signals corrupted by noise occurs in a variety of signal processing problems (see,
e.g. Li et al. 1996; Rao et al. 1994; Kundu and Mitra 1996; Mitra and Stoica 2002 and the
references cited therein). In this paper, we study the large sample asymptotic properties of
the EEF based estimator of the model ordermo of (3). Results proved in this paper generalize
existing results available in the literature for one-dimensional real valued sinusoidal model
(see for example (Agrawal et al. 2018) and the references cited therein).

The rest of the paper is organised as follows. In Sect. 2, we formulate the EEF rule for
model order estimation of the 2-dimensional complex exponential signal model. In Sect. 3,
we study and establish the consistency property of the EEF based estimator of model order.
Finally in Sect. 4, we present the finite sample simulation studies to access the performance of
the EEF based order estimation method and compare it’s performance with other prominent
model selection rules.
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2 Model order estimation of 2-dimensional complex exponential
signals using EEF

In this section we formulate the EEF rule based order estimation method for estimating the
order of the signal model (3). We will be using the following notations through out the paper.

y = (y(1, 1), . . . , y(S, 1), y(1, 2), . . . , y(S, T ))′

ε = (ε(1, 1), . . . , ε(S, 1), ε(1, 2), . . . , ε(S, T ))′

f (θm) = ( f (1, 1, θm), . . . , f (S, 1, θm), . . . , f (S, T , θm))′

We make the following assumptions for the model (3);

• Assumption A1: ε(s, t) are i.i.d complex valued gaussian with zero mean such that

ε(s, t) = εR(s, t) + i εC (s, t),

εR(s, t) ∼ N (0, σ 2/2),

εC (s, t) ∼ N (0, σ 2/2).

Further, εR(s, t) and εC (s, t) are independent.
• Assumption A2: ∀k = 1, 2, ...,mo, (βk, ωk) ∈ (0, 2π)x(0, 2π); where (βk, ωk) are

pairwise different i.e. ω j �= ωk or β j �= βk,∀ j �= k. Furthermore, ∀k = 1, 2...,mo, αks
are bounded.

• AssumptionA3: The truemodel parameter vector θmo is an interior point in the parameter
space 	 ⊂ R

4mo .

Under the stated assumptions on the complex noise random variables, the likelihood function
for an m-component model is given by

fm(y, θ∗
m) = 1

(
2πσ 2

2

)ST
e

−(y− f (θm ))H (y− f (θm ))

σ2m . (4)

For solving the order estimation problem, we consider the set of m̃ nested models given by
{Mm}m̃m=1, where Mm is them component 2-dimensional signal model with parameter vector
θ∗
m . We assume that the true model Mmo is contained in this set, i.e., mo ≤ m̃ and y is not a
purely white noise process i.e., M0 �= Mmo .

Let us consider the Generalized likelihood ratio,

r̂m+1 = 2 ln

[
fm(y, θ̂∗

m)

f0(y, θ̂∗
0 )

]
, (5)

where θ̂∗
k is the maximum likelihood estimate of the underlying signal and noise parameter

vector θ∗
k and f0(y, θ̂∗

0 ) denotes the p.d.f of y when M0 is the model.
The EEF rule based criterion function for the 2-dimensional complex exponential signal

model is formulated as

EEF(m) =

⎧
⎪⎨

⎪⎩
r̂m+1 − (4m + 1)

[
1 + ln

( r̂m+1

4m + 1

)]
, if r̂m+1 > 4m + 1.

0, otherwise.
(6)

EEF based estimator of the model order is obtained by maximising the EEF statistic over
m = 1, 2, . . . , m̃, i.e.

m̂ = arg max
m∈{1,2,...,m̃}

EEF(m). (7)
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Remark The above formulation of EEF rule based estimator for the 2-dimensional complex
exponential model is a generalization of the formulation introduced in (Stoica and Babu
2012; Kay 2005; Agrawal et al. 2018) applicable for one-dimensional real valued sinusoidal
model.

3 Consistency of EEF rule

In this section, we establish the main large sample asymptotic results of the paper. We write
the model (3) as:

y = Dm(β, ω)am + ε, (8)

where, ∀ j = 1, 2, ...,m,

e j = (ei(βk+ωk ), . . . , ei(Sβk+ωk ), ei(Sβk+Tωk ))′,
β = (β1, β2, ..., βm)′,
ω = (ω1, ω2, ..., ωm)′,

Dm(β, ω) = (e1, e2, ..., em)ST xm,

am = (α1, α2, ..., αm)′mx1.

Throughout the paper, we would write Dm for Dm(β, ω) and D̂m for Dm(β̂, ω̂) for notational
simplicity. In the derivations and results that follow, we will use the following notations.

• We use O(.) and o(.) to denote either the order in probability or deterministic order
depending on the context.

• Let {
i } be a sequence of rectangles such that 
i = {(s, t) ∈ Z
2|1 ≤ s ≤ Si , 1 ≤

t ≤ Ti }. Then, the sequence of subsets {
i } will be said to tend to infinity as i → ∞ if

limi→∞ min(Si , Ti ) → ∞ and 0 < limi→∞
(

Si
Ti

)
< ∞. For notational convenience,

we omit subscript i . Thus, 
(S, T ) → ∞ implies both S and T tend to infinity as a
function of i , and roughly at the same rate.

We need the following lemmas to prove the main result.

Lemma 3.1 Under the assumptions A1-A3, ∀m ≤ mo,

σ̂ 2
m = σ 2 +

mo∑

j=1

αH
j α j −

m∑

j=1

α̂H
j α̂ j + o(1), (9)

a.s. as 
(S, T ) → ∞.

Proof The estimated variance of noise for (8) given by

σ̂ 2
m = yH (IST − Pm(β̂, ω̂))y

ST
, (10)

where, Pm(β̂, ω̂) = D̂m(D̂m
H
D̂m)−1 D̂m

H
is the projection matrix. Note that for the true

model y = Dmoamo + ε and hence

σ̂ 2
m = 1

ST

[
εH ε + 2εH Dmoamo + aH

mo
DH
mo

Dmoamo

− âH
mo

D̂H
mo

D̂mo âmo

]
,

(11)
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where, âm = (D̂m
H
D̂m)−1 D̂m

H
y. Since εR(s, t) and εC (s, t) are independent, by Kol-

mogorov’s Strong law of Large Numbers (see e.g. Chung 2001) we have

εH ε

ST
=

∑S
s=1

∑T
t=1 ε2R(s, t)

ST
+

∑S
s=1

∑T
t=1 ε2C (s, t)

ST
,

→ σ 2

2
+ σ 2

2
= σ 2,

(12)

a.s. as 
(S, T ) → ∞. Realize that

εH Dmoamo

ST
= 1

ST

( mo∑

k=1

αk

( S∑

l=1

T∑

j=1

ε̄(l, j)ei(lβk+ jωk )

))
. (13)

Lemma 2 of Kundu and Mitra (1999; 1996) implies

εH Dmoamo

ST
= o(1) a.s. (14)

as 
(S, T ) → ∞. Further, using the fact that

lim
n→∞

∑n
t=1 e

itw̃

n
= o(1) for some fixed ω̃ ∈ (0, 2π), (15)

it can be shown that

1

ST
aH
mo

DH
mo

Dmoamo =
mo∑

j=1

αH
j α j + o(1) a.s., (16)

and
1

ST
âH
mo

D̂H
mo

D̂mo âmo =
m∑

j=1

α̂H
j α̂ j + o(1) a.s. (17)

as 
(S, T ) → ∞. Thus using (12), (14), (16) and (17), we have ∀m ≤ mo

σ̂ 2
m = σ 2 +

mo∑

j=1

αH
j α j −

m∑

j=1

α̂H
j α̂ j + o(1) a.s. as 
(S, T ) → ∞. (18)

�

Lemma 3.2 Under A1-A3, for any integer k ≥ 1

σ̂ 2
mo+k = σ̂ 2

mo
− Gk

ST
+ o

(
(ln(ST ) ln S ln T )1/2

ST

)
(19)

a.s. as 
(S, T ) → ∞, where Gk = ∑k
j=1 Iε(β̂mo+ j , ω̂mo+ j )

and

Iε(β, ω) = 1

ST

∣∣∣∣
S∑

s=1

T∑

t=1

ε(s, t)e−i(sβ+tω)

∣∣∣∣
2

. (20)

Iε(β, ω) corresponds to periodogram of underlying white noise process and (β̂mo+1, ω̂mo+1),
... , (β̂mo+k, ω̂mo+k) are frequencies that correspond to the k largest peaks of Iε(β, ω). Thus,
Gk is the sum of k largest elements of the periodogram of noise.
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Proof Note that

α̂mo+l = 1

ST

S∑

s=1

T∑

t=1

ε(s, t)e−i(sβ̂mo+l+tω̂mo+l ),

D̂mo+k = (ê1, ê2, . . . , êmo+k),

= (D̂mo , êmo+1, êmo+2, . . . , êmo+k).

Similarly,

âmo+k = (â′
mo

, α̂mo+1, α̂mo+2, . . . , α̂mo+k)
′.

Using Theorem 2 of Francos and Kliger (2005) (see also Kliger and Francos 2008; Prasad
et al. 2008), we note that in case of overestimation, MLE of the overestimated parameter
vector contains a subvector equal in dimension to the true model order, that converges almost
surely to the true parameter vector. Further, the frequencies of the overestimated components
correspond to those which sequentially maximise the noise periodogram. The variance of the
overestimated model is given by,

σ̂ 2
mo+k = yH (IST − Pmo+k(β̂mo+k, ω̂mo+k))y

ST
. (21)

Substituting the values of âmo+k and D̂mo+k we get

σ̂ 2
mo+k = σ̂ 2

mo
− T1 − T2, (22)

where,

σ̂ 2
mo

= 1

ST
(yH y − âH

mo
D̂H
mo

D̂mo âmo),

T1 = 2
k∑

k=1

T1 j and T2 =
k∑

j=1

T2 j + 2
k∑

j=1

k∑

j̃=1

j �= j̃

T2( j, j̃),

T1 j = 1

ST
δ j�

H
j D̂mo âmo ,

T2 j = 1

ST
δ j�

H
j � jδ

H
j ,

T2( j, j̃) = 1

ST
δ j�

H
j � j̃δ

H
j̃
,

and δ j = α̂mo+ j and � j = êmo+ j . If ε(s, t) is 2-dimensional array of circularly symmetric
Gaussian with zero mean and finite variance then, E(εR(1, 1)2log|εR(1, 1)|) < ∞ and
E(εC (1, 1)2log|εC (1, 1)|) < ∞ (He 1995) and hence it follows from Theorem 2.2 of He
(1995) that

lim sup

(S,T )→∞

supω Iε(ω)

σ 2 ln(ST )
≤ 8 a.s. (23)

Also, note that ∀ω ∈ (0, 2π)

1

n

n∑

t=1

eitω = o

(
ln n

n

)1/2

. (24)
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Observe that ∀ j = 1, 2, . . . , k

|α̂mo+ j |2 = 1

ST
Iε( ˆβmo+ j , ˆωmo+ j ), (25)

|α̂mo+ j | = o

(
ln(ST )

ST

)1/2

a.s.. (26)

Using (23),(24) and (25), ∀ j = 1, 2, . . . ,mo as 
(S, T ) → ∞
1

ST
α̂mo+1ê

H
mo+1ê j α̂

H
j = o

(
(ln(ST ) ln S ln T )1/2

ST

)
.

Thus,

T11 = o

(
(ln(ST ) ln S ln T )1/2

ST

)
a.s.

Further, ∀ j = 1, 2, . . . , k

T1 j = o

(
(ln(ST ) ln S ln T )1/2

ST

)
a.s.,

T1 = 2
k∑

k=1

T1 j = o

(
(ln(ST ) ln S ln T )1/2

ST

)
a.s.,

as 
(S, T ) → ∞. Similarly, ∀ j �= j̃

T2( j, j̃) = o

(
(ln(ST ) ln S ln T )1/2

ST

)
a.s. as 
(S, T ) → ∞

Also, ∀1 ≤ j ≤ k,

T2 j = 1

ST
α̂mo+ j ê

H
mo+ j êmo+ j α̂

H
mo+ j ,

= |α̂mo+ j |2 = 1

ST
Iε( ˆβmo+ j , ˆωmo+ j ).

Thus finally we have as 
(S, T ) → ∞

σ̂ 2
mo+k = σ̂ 2

mo
− Gk

ST
+ o

(
(ln(ST ) ln S ln T )1/2

ST

)
, (27)

almost surely, where Gk = ∑k
j=1 Iε(β̂mo+ j , ω̂mo+ j ). �


Lemma 3.3 Under assumptions A1-A3, rm as defined before in (5) satisfies

rm =
{
0, m = 1,
O(ST ), 2 ≤ m ≤ m̃.

(28)

Proof From (5), we get

rm = 2ST ln

(
σ̂ 2
0

σ̂ 2
m−1

)
, (29)

where, σ̂ 2
0 = 1

ST

∑S
s=1

∑T
t=1 y(s, t)

H y(s, t) as 
(S, T ) → ∞. It is easy to see that for
m = 1, r1 = 0. Under the assumptions on the 2-dimensional complex array of noise random
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variables, MLE θ̂k of θk is same as the nonlinear least square estimate and we have using
results from Kliger and Francos (2008), Prasad et al. (2008) that as 
(S, T ) → ∞,

α̂ j → α j for j = 1, 2, . . . ,m;m ≤ mo. (30)

We consider the overestimation and underestimation cases separately.
Case 1: m ≤ mo(underestimation)
∀m ≤ mo, we have

σ̂ 2
m → σ 2 +

mo∑

j=m+1

αH
j α ja.s. and σ̂ 2

mo
→ σ 2 a.s. (31)

as 
(S, T ) → ∞. Thus for 2 ≤ m ≤ mo

rm
ST

= 2 ln

(
1 +

∑m−1
j=1 αH

j α j

σ 2 + ∑mo
j=m αH

j α j

)
a.s. (32)

as 
(S, T ) → ∞. Note that the r.h.s. is bounded by model assumptions and is a strictly
positive quantity. Hence, we have rm = O(n) a.s. for all m ≤ mo.
Case 2: m > mo(overestimation)
For m > mo, using 3.1 and Lemma 3.2 we have

rm
ST

= 2 ln

(
σ 2 + ∑mo

j=1 αH
j α j

σ 2 + Gm−mo
ST + o

(
(ln(ST ) ln S ln T )1/2

ST

)
)
a.s. (33)

as 
(S, T ) → ∞. Since ∀k = 1, 2, . . . , m̃ − mo, Gk = ∑k
j=1 Iε(βmo+ j , ωmo+ j ). Using

(23), Gk = O(ln(ST ))

Gm−mo

ST
→ 0 a.s and o

(
(ln(ST ) ln S ln T )1/2

ST

)
→ 0, (34)

as 
(S, T ) → ∞. Combining this we have for all m > mo

rm
ST

= 2 ln

(
1 +

∑mo
j=1 αH

j α j

σ 2

)
= O(1) a.s. as 
(S, T ) → ∞. (35)

Hence, we have the desired result. �

Remark Note that Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4 are generalizations
of the lemmas presented in Agrawal et al. (2018) for one-dimensional real valued multiple
sinusoidal model. The novelty in the proofs of the above lemmas and also in the proof of
the main consistency result that follows, as compared to those in Agrawal et al. (2018), lie
in the treatment of 2-dimensional array of circularly symmetric Gaussian noise and resultant
2-dimensional array of complex random signals for deriving the asymptotic results. The
lemmas in Agrawal et al. (2018) follow from the present lemmas as special cases. The
lemmas presented above allows us to generalize the large sample consistency results of EEF
rule based estimator for one-dimensional real valued sinusoidal signal model to the case
of two-dimensional complex exponential signal model. We now state and prove the main
consistency result of the paper.

Theorem Under the Assumptions A1-A3, with mo as the true model order and if m̂ is the
estimated model order using EEF rule, then

P(m̂ �= mo) → 0 as 
(S, T ) → ∞. (36)
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Proof In the proof, we consider the overestimation and underestimation cases separately and
prove that in each of the cases, probability of wrong estimation of model order goes to zero
as 
(S, T ) → ∞.

Case I: m ≤ mo (underestimation)
Subcase I: r̂m+1 > 4m + 1 ;r̂mo+1 > 4mo + 1
It is easy to see that

EEF(m)−EEF(mo) = r̂m+1−r̂mo+1−(4m+1) ln(r̂m+1)+(4mo+1) ln(r̂mo+1)+k, (37)

where,
k = 4(mo − m) + (4m + 1) ln(4m + 1) − (4mo + 1) ln(4mo + 1). (38)

Also since

r̂m+1 = 2ST ln
( σ̂ 2

o

σ̂ 2
m

)
, (39)

we have,

EEF(m)− EEF(mo) = −2ST ln
( σ̂ 2

m

ˆσ 2
mo

)
− (4m + 1) ln(r̂m+1)+ (4mo + 1) ln(r̂mo+1)+ k.

(40)
Using Lemma 3, we get r̂m+1 = O(ST ) ∀m ≤ mo and using Lemma 1, we have ∀m ≤ mo

σ̂ 2
m → σ 2 +

mo∑

k=m+1

αH
k αk a.s.,

and ˆσ 2
mo

→ σ 2,

a.s. as 
(S, T ) → ∞. Thus we have ∀m ≤ mo

ln
( σ̂ 2

m

ˆσ 2
mo

)
→ ln

(
1 +

∑mo
j=m+1 αH

j α j

σ 2

)
a.s. as 
(S, T ) → ∞, (41)

the r.h.s. above is strictly positive and a bounded quantity. Using this in (40), we get

EEF(m) − EEF(mo) = O(ST ) − (4m + 1)O(ln(ST )) + (4mo + 1)O(ln(ST )) + k a.s..
(42)

Subsequently, we have that

EEF(m) − EEF(mo)

ST
→ −2 ln

(
1 +

∑mo
j=m+1 αH

j α j

σ 2

)
, (43)

a.s. as 
(S, T ) → ∞. Therefore, we have EEF(m) < EEF(mo) with probability 1.
Subcase 2: r̂m+1 < 4m + 1 ;r̂mo+1 > 4mo + 1 We have

EEF(m) = 0,

EEF(mo) = r̂mo+1 − (4mo + 1)

[
1 + ln

( r̂mo+1

4mo + 1

)]
.

Note that g(x) = x−ln x−1 has a uniqueminimumvalue of 0 at x = 1, hence EEF(mo) > 0
for r̂mo+1 �= 3mo + 1. Thus EEF(mo) > EEF(m),∀m ≤ mo and hence underestimation
is not possible in this case.
Subcase 3: r̂m+1 > 4m + 1 ;r̂mo+1 < 4mo + 1
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We know from Stoica and Babu (2012), that for large sample size EEF(m) ∼= r̂m+1− (4m+
1) ln n. Thus r̂mo+1 < 4mo + 1 and EEF(mo) = 0 and hence we have

EEF(m) − EEF(mo)

ST ln(ST )
= r̂m+1

ST ln(ST )
− 3m + 1

ST
(44)

as 
(S, T ) → ∞. By Lemma 3, r̂m+1 = O(ST ) and therefore

EEF(m) − EEF(mo)

ST ln(ST )
→ 0 as 
(S, T ) → ∞,

or, P
( EEF(m) − EEF(mo)

ST ln(ST )
> 0

)
→ 0 as 
(S, T ) → ∞.

Thus for all the subcases discussed above,

P(m̂ < mo)

= P(EEF(m) > EEF(mo) for some m < mo)

→ 0 as 
(S, T ) → ∞.

Case 2: m > mo (overestimation)
Subcase 1: r̂m+1 > 4m + 1 ;r̂mo+1 > 4mo + 1
We have

EEF(m)− EEF(mo) = −2ST ln
( σ̂ 2

m

σ̂ 2
mo

)
− (4m + 1) ln(r̂m+1)+ (4mo + 1) ln(r̂mo+1)+ k.

(45)

Since m > mo, r̂m+1 = 2 ln
(

f̂m
f̂o

)
> 2 ln

(
f̂mo

f̂o

)
= r̂mo+1, using which we have

EEF(m) − EEF(mo) ≤ −2ST ln
( σ̂ 2

m

σ̂ 2
mo

)
+ k + 4(mo − m) ln(r̂m+1). (46)

It follows from the asymptotic theory of likelihood ratios (see Wilks 1946; Lehmann and
Romano 2005) that,

2ST ln

(
σ̂ 2
m

σ̂ 2
mo

)
∼ χ2

4(m−mo)
. (47)

Thus, 1
ln(ST )

(
2ST ln

(
σ̂ 2
m

σ̂ 2
mo

))
= op(1). Since k is independent of n and m > mo, and from

Lemma 3 we have r̂m+1 = O(ST ), we get

P

(
1

ln(ST )

(
−2ST ln

(
σ̂ 2
m

σ̂ 2
mo

)
+ k + 4(mo − m) ln( ˆrm+1)

)
< 0

)
→ 1 as 
(S, T ) → ∞.

(48)
Hence we have from (46) that

P

(
EEF(m) − EEF(mo)

ln(ST )
< 0

)
→ 1 as 
(S, T ) → ∞. (49)

Therefore,

P(m̂ > mo)

= P(EEF(m) − EEF(mo) > 0 for some m > mo)

= P

(
EEF(m) − EEF(mo)

ln(ST )
> 0

)
→ 0 as 
(S, T ) → ∞.
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Subcase 2 : r̂m+1 < 4m + 1 ;r̂mo+1 > 4mo + 1
Under this subcase,

EEF(m) = 0

and EEF(mo) = r̂mo+1 − (4mo + 1)

[
1 + ln

( r̂mo+1

4mo + 1

)]
.

Using the same argument as in Subcase 2 of Case 1, we conclude that overestimation is not
possible in this case either.
Subcase 3 : r̂m+1 > 4m + 1 ; r̂mo+1 < 4mo + 1
Similar to the underestimation case, we know from Stoica and Babu (2012), that for large
samples EEF(m) ∼= r̂m+1 − (4m + 1) ln(ST ). Note that r̂mo+1 < 4mo + 1, EEF(mo) = 0
and hence we have

EEF(m) − EEF(mo)

ST ln(ST )
= r̂m+1

ST ln(ST )
− 3m + 1

ST

as 
(S, T ) → ∞. From Lemma 3, r̂m+1 = O(ST ) and hence

P
( EEF(m) − EEF(mo)

ST ln(ST )
< 0

)
→ 1 as 
(S, T ) → ∞. (50)

Thus for all the subcases discussed above,

P(m̂ < mo) = P(EEF(m) < EEF(mo) for some m < mo)

→ 0 as 
(S, T ) → ∞ (51)

Hence, from the two cases of over and underestimation we have that

P(m̂ �= mo) → 0 as 
(S, T ) → ∞. (52)

�


4 Numerical simulations

In this section we present the finite sample simulation studies to investigate the performance
of the EEF based order estimation rule for estimating the order of 2-dimensional complex
exponential signal model and to compare its performance with other popular model order
estimation rules. We compare the performance of the EEF based order estimates with AIC,
BIC and PALbased approach formodel order selection.We consider the following simulation
signal model

y(s, t) =
2∑

k=1

αke
i(sβk+tωk ) + ε(s, t).

with α1 = 1 + √
2i, β1 = 0.26π, ω1 = 0.26π ; α2 = 2 + 2i, β2 = 0.62π, ω2 = 0.62π.

ε(s, t) is taken as complex valued Gaussian as defined in Assumption A1 (Fig. 1). We
vary the value of σ 2 from 0.5 to 15, S and T are varied from 9 to 20 and compute the estimate
of probability of correct estimation of model order over 500 simulation runs and compare
the performances with the rules listed below.

PAL(m) = −2 ln( fm(y, θ̂∗
m)) + (4m + 1) ln(4m̃ + 1)

ln(rm + 1)

ln(ρm + 1)
,
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Fig. 1 Probability of correct order estimation; S, T = 9

Fig. 2 Probability of correct order estimation; σ 2 = 1

BIC(m) = −2 ln( fm(y, θ̂∗
m)) + (4m + 1) ln(ST ),

AIC(m) = −2 ln( fm(y, θ̂∗
m)) + 2(4m + 1).

Where, ρm in PAL(m) is given by ρm = 2 ln

[
fm̃ (y,θ̂∗

m̃ )

fm−1(y,θ̂∗
m−1)

]
.

From the simulation studies we observe that the EEF rules performs well for low noise
variance and large sample sizes of S and T . Probability of correct estimation ofmodel order at
S, T = 9 reaches 1 even for high sigma square values of 3. Its performance is better than AIC
and BIC for small values of σ 2 and its comparable to PAL rule. However for larger values
of noise variance, the probability of correct estimation takes large number of samples for
attaining the limiting probability of 1. Simulation results validate the asymptotic consistency
results for EEF established in the paper. We further observe that, except AIC, for all the other
methods, the probability of correct estimation increases as S and/or T increases or as noise
variance decreases (Figs. 1, 2, 3, 4, 5 and 6).
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Fig. 3 Probability of correct order estimation; σ 2 = 3

Fig. 4 Probability of correct order estimation; σ 2 = 6

Fig. 5 Probability of correct order estimation; S, T = 20
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Fig. 6 Probability of correct order estimation; σ 2 = 15

5 Conclusions

In this paper, we framed EEF based model order estimation of the order of a 2-dimensional
superimposed complex exponential signals model and study the large sample asymptotic
statistical properties of the estimator of model order. We established that the estimator is
large sample consistent. Numerical simulations are performed to ascertain the performance
of the order estimation method and to compare its performance with other popular order
estimation methods. Simulation results validate the theoretical asymptotic results and show
satisfactory performance of the EEF rule based method.
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