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Abstract. Recently a novel approach of model order selection based on penalizing adaptively the 

likelihood (PAL) function was introduced in [1]. In this paper, we use the PAL method for order 

estimation of complex valued nonlinear exponential (cisoid) model and study its asymptotic 

statistical properties. We investigate the asymptotic statistical properties for the 1-dimensional 

cisoid model under the assumption of circularly symmetric gaussian error distribution and establish 

that the PAL estimator is consistent. We also present simulation examples to compare the 

performance of PAL rule with the commonly used information criteria based rules. 

Introduction 

Model order selection is a fundamental task in time series analysis and signal processing as once 

the integer valued parameter model order is estimated, we know the complexity of the model.  The 

parameters characterizing the model can only be estimated after the model order is estimated. The 

most widely used approach for order estimation in such a situation is the one based on information 

theoretic criteria, the AKAIKE Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC) being the most prominent ones. For a review of the various order estimation methods, see 

[1]-[3] and the references cited therein. 

Under a general model order selection framework, many of the popular rules used for estimation 

of model order have the following form: 

ˆ2 ln ( , ) ( )m mf y n mθ ρ− +                                                       (1) 

where ( )n mρ  denotes the penalty associated with model order which may depend on sample size 

n and m, where m denotes the model order and ˆ( , )m mf y θ  denotes the probability density function 

under the hypothesis that y is generated from a model with dimension of the signal parameter vector 

being m. x1ˆ m

mθ ∈R  being the maximum likelihood estimate of the parameter vector given y. The 

different penalty terms gives rise to different order selection rules: : ( ) = 2;AIC nρ

: ( ) = ln .BIC n nρ  

In this paper, we propose to use the novel method introduced in [1] using a data adaptive penalty 

and having oracle-like properties for cisoid models and prove that the estimators of model order 

using PAL rule is consistent. We also present some simulation results for a 1-d cisoid model and 

compare the performance of PAL with other widely used information criterion rules.  

PAL Rule and Its Consistency for 1-d Complex Cisoid Model 

We consider the problem of estimating the number of components of the following complex cisoid 

model: 
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1 1 1= ( , , ,..., , , )m m m m
R C R C

θ α α ω α α ω ′  is a 3 x1m  vector of unknown signal parameters; j
R

α  and 

j
C

α  denote the real and imaginary parts of ,
j

α j=1,..., m. 

Let om  be the true number components in the the observed signal. Given a sample of size n, 

1 2= ( , ,..., )ny y y y ′ , the model order estimation problem is to estimate om .  For establishing the 

consistency results of the paper, we make the following assumptions: 

Assumption A1: { }tε is a sequence of i.i.d complex valued gaussian random variables with zero 

mean such that = ;
t t t

R C
iε ε ε+ ( )

20, 2t
R

Nε σ∼ , ( )
20, 2t

C
Nε σ∼  and are independent. 

Assumption A2: = 1,2,..., : (0,2 )o kk m ω π∀ ∈ ; ,
j k

j kω ω≠ ∀ ≠ . Furthermore, 

= 1,2..., :o kk m α∀ ’s are bounded. 

Assumption A3: The true model parameter vector m
o

θ  is an interior point in the parameter 

space 
3m

o
Θ ⊂ R . 

Let 1 2= ( , ,..., )ny y y y ′ , 1 2= ( , ,..., )nε ε ε ε ′  and for an m-component model, let * 2= ( , )m m mθ θ σ ′  

denote the vector containing the underlying signal and noise parameters, then the p.d.f. of y under 

these assumptions can be written as 
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 where 
mM  is the m component cisoid model with parameter 

vector *

m
θ . We assume that the true model m

o
M  is contained in this set .i.e., om m≤ �  and y is not 

completely a white noise process, i.e., 0 .m
o

M M≠   Consider the two generalized likelihood ratios, 
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where *ˆ
kθ  is the MLE of underlying signal and noise parameter vector *

k
θ  and ( )

*

0 0
ˆ,f y θ  denotes 

the p.d.f of y when 0M  is the model, i.e. 0( ) = 0f θ .  The PAL function and the PAL rule based 

estimator can then be defined using the GLR ratios as follows:  

( )( )
* ln( 1)ˆ( ) = 2ln , (3 1) ln(3 1)

ln( 1)

m
m m

m

r
PAL m f y m mθ

ρ

+
− + + +

+

�

                            (5) 

{1,2,..., }

ˆ = arg min ( ).
m m

m PAL m
∈ �                                                          (6) 

Remark 1: Realize that the ratio 
ln( 1)

ln( 1)

m

m

r

ρ

+

+

 in the PAL(m) function is such that (i) it is an 

increasing function of m, (ii) at m =1, 1r = 0 hence the ratio is 0 and (iii) the ratio is > 0  2m∀ ≥ . 

To prove the consistency of the PAL rule for complex cisoid model we need the following 
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lemmas.  The lemmas can be easily proved using the results in [3,4,5] 

Lemma 1: Under the assumptions A1-A3, om m∀ ≤ ,  

2 2
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m mo

H H

m j j j j

j j

oσ σ α α α α  a.s. as n → ∞ . 
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underlying white noise process and 1 2
ˆ ˆ ˆ, ,...,

+ + +m m m k
o o o

ω ω ω  are the k largest frequencies 

corresponding to ( )I
ε

ω .  Thus, 
kG  is the sum of k largest elements of the periodogram of noise. 

Lemma 3: Under assumptions A1-A3, 
mr  satisfies  

0, = 1,
=

( ), 2 .
m

m
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≤ ≤ �
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Lemma 4: Under the assumptions A1-A3, mρ  satisfies  
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Remark 2: Using Lemma 3 and Lemma 4, the ratio 
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 , therefore, satisfies  
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Theorem: Under A1-A3, if om  is true order ( om m≤ � ) and m̂  is the estimated model order 

using PAL rule then  

ˆ( ) 0 asoP m m n≠ → → ∞ . 

Proof: Under assumption of the model, the PAL rule can be written as  

( )
2 ln( 1)

ˆ( ) = 2 ln (3 1) ln(3 1)
ln( 1)
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where γ  is a constant independent of m. 

Case 1: Underestimation ( om m≤ ) 
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Using Lemma 1, 
2
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∑ where r.h.s. is strictly 

positive and bounded.  Further, using Lemma 3 and 4 we get,  

(ln ) (ln )
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Case 2: Overestimation ( > om m )  

We observe that  
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We know from Remark 1 that < om m∀  and ∀ n,  
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as the ratio is an increasing function of m. Therefore, we can write  
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It follows from the asymptotic theory of likelihood ratios that, ( )
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This proves the result that ˆ( ) 0 asoP m m n≠ → → ∞ . 
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Numerical Examples 

We consider the following 1-D cisoid model for simulation to compare performance of PAL 

method based estimator with other popular model order selection rules:  
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ω

α ε+∑ , 1 2 3
= 3 2, = 2 1.66, = 1.75i i iα α α+ + + , 1 2 3

= 0.8 , = 1.2 , = 1.4 .ω π ω π ω π  

t
ε  are i.i.d complex valued circularly symmetric gaussian error with zero mean and variance 

2 / 2σ . We have considered the maximum model order to be 10, and sample size is varied from 5 to 

200. We estimate the model order using different model order selection rules including PAL, BIC, 

BIC corrected (BICc) and AIC and report the probabilities of correct selection based on 200 

simulation runs. Some representative plots from the simulation results are given in Figure 1 –Figure 

4. 

 

 

Figure 1. Results for 
2 3σ = . 

 

Figure 2. Results for 
2 20σ = . 
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Figure 3. Results for n=25. 

 

Figure 4. Results for n=100. 
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